BIOCHAR FOR EMERGENCY ENERGY STOCK AND NATURAL GAS REPLACEMENT

Erol MURAD¹, Florian DRAGOMIR², Manuela DRĂGHICESCU³, Andrei PĂTRUȚ⁴

¹ EKKO OFFICE AG, Innovation Department, erolmurad@yahoo.com

² PROMECO SD, promeco@digiro.net

³ SUNE, manuela.draghicescu@gmail.com

⁴ CALORIS Group S.A., andrei.patrut@ymail.com

Abstract: Energy and biochar (BCH) are produced from vegetable biomass, with thermo-chemical processes, without residues and with negative CO_2 emissions. Quality BCH with molar ratios O/H <0.2 and H/C < 0.2 contains at least 40% of biomass carbon, has 33% of input energy, is porous with a specific surface area of 150 - 400 m2/g.bc and has many non-energy uses. BCH with 10% moisture can be stored long-term as a carbon and energy stock. BCH as an agricultural amendment cheaply sequesters CO2 in the long term and ensures increased horticultural production. A stock of BCH ensures the production of cheap electricity and heat, when and as much as needed, with zero or negative CO_2 emissions, without or with low-capacity electric storage. Low-volatile BCH gasified in miniCHP unit produces electricity with 30% efficiency and thermal energy with 56%. For a CO_2 emission below zero, a maximum of 70% of the biochar produced is gasified. From the gasification of BCH with O2 and H2O, gas.bc is obtained as a cheap substitute for natural gas for local use in smart hybrid energy mini-grids.

Keywords: Biochar, energy stock, carbon footprint, natural gas

1. Introduction

In the current period, bio-oil, biochar and pyrolysis gas can be produced from residual biomass through allothermal or autothermal pyrolysis on an industrial scale. On a midi scale, gas.bm and biochar (BCH) are obtained through gasification. Gas.py and gas.bm are burned to produce heat, and biochar for use as an agricultural amendment, filter material, or emergency energy stock [2, 3, 4, 5, 6, 15, 18].

The use of biochar as an agricultural amendment sequesters carbon in the soil for long periods of time with a negative carbon footprint CFP, is used as a filter material. The biochar is stored and gasified to recover energy, the toxic ash is embedded in concrete and stored for the long term, operation with positive CFP [1, 11, 12, 17, 19].

To decarbonize energy production with the CFP = 0 limit, it is necessary that part of the biochar be incorporated into agricultural soils to sequester carbon and contribute to increasing agricultural production, on average by 13% [8, 9, 10, 12].

Depending on the biomass from which the biochar is produced, for CFP =0 it would be necessary for at least 30% of the produced biochar to be used as an agricultural amendment [6, 7, 10].

Biochar with an average moisture content of 10% can be stored in maximum safety, building a decentralized energy stock that can be used – *when and as much as needed* – usually in emergency situations, without the grid, without photovoltaics or wind.

The residual or energetic biomass from which energy and biochar are produced is very diverse in chemical composition and ash content. Depending on the pyrolysis or gasification regime, different proportions of biochar with equally different properties are obtained.

In Romania, about 3500 thousand toe of energy is consumed annually for heating homes. 3 million homes are heated by burning wood, with thermal efficiencies below 30%, which represents a major national waste of energy. The efficient gasification of biomass and the use of biochar stocks for emergency situations are economically and ecologically viable alternatives, with great social impact.

2. Material and methods

Heat, bio-oil and biochar result from vegetable biomass with pyrolysis and gasification processes. Bio-oil and BCH can be stored, but the heat must be consumed efficiently and economically. A continuous production does not adapt to the real consumption of heat and electricity, which have a dominant random component. Producing energy when and as much as needed is the optimal economic and ecological option. Systems with the CHAB concept with discretized operation can produce heat when and as much as needed with a very small heat storage capacity [3, 4, 5, 7, 15]. The production of heat and biochar is done with CHAB concept installations equipped with GSIDD gas generators, with thermal power of 100kWth in hot water, called SEB.HW100, which can gasify a wide variety of chopped or pelletized vegetable biomass. The operating regimes are controlled to obtain a share of 20% biochar from dry biomass, i.e. 0.2 Mg.bc/Mg.bm.db, as well as maintaining the temperature in the OZ oxidation zone below the ash softening temperature.

A CHP.BC50 cogeneration unit is used for the production of gas.bc and electricity, it is equipped with a downdraft gasifier GBC.DD to obtain gas.bc with very little tar and high HHV.

For the simulation of biomass gasification, the MER.BM.GAZ.DD simulation program with the MUKMER model, produced by EROLSoft, was used for the oxypyrolysis and gasification processes with stratified downdraft or reversible front processes.

For the simulation of the SEB.HW100 unit, the MER.SEB.MESI simulation program, produced by EROLSoft, was used for the production of hot water/air and biochar.

For biochar gasification, the simulation program MER.BCH.GAZ.DD, produced by EROLSoft, was used for gasification with air, CO2, H2O and O2.

The results obtained have a margin of error of +5% to -10% due to the characteristics of the biomass used which have a large random dispersion due to the pedoclimate conditions and applied agricultural technologies.

Several types of residual, energetic or forestry biomass will be analyzed. Table 1 shows the types of nonwoody biomass, table 2 shows the types of woody biomass.

Feature	U.M.	Values				
Biomass type		wheat straw	corn stover	vegetables growing wastes	miscanthus	
Biomass price	€/Mg.bm	130.00	130.00	130.00	160.00	
Water	kg.w/kg/bm	0.080	0.080	0.080	0.080	
Carbon	kg.C/kg/bm	0.4195	0.4444	0.4119	0.4407	
Hydrogen	kg.H/kg/bm	0.0534	0.0476	0.0611	0.0552	
Oxygen	kg.O/kg/bm	0.3938	0.3692	0.4191	0.3831	
Azote	kg.N/kg.bm	0.0000	0.0000	0.0000	0.0055	
Sulfur	kg.S/kg.bm	0.0000	0.0000	0.0000	0.0051	
Ash	kg.ash/kg.bm	0.0534	0.0589	0.0280	0.0305	
HHV for BM.db	MJ/kg.bm.db	18.158	18.635	18.574	19.317	
HHV	kWh/kg.bm	4.641	4.762	4.747	4.937	
LHV for BM.db	MJ/kg.bm.db	16.885	17.499	17.116	17.999	
LHV	kWh/kg.bm	4.261	4.418	4.320	4.546	
Stoichiometric Flow	kg.air/kg.bm	4.979	5.172	5.048	5.332	
Softening ash temperature	degree C	840	990	1000	835	

s
S

Feature	U.M.	Values				
Biomass type		beech wood	energetic poplar	vine pruning	fruit growing pruning	
Biomass price	€/Mg.bm	200.00	200.00	130.00	140.00	
Water	kg.w/kg/bm	0.080	0.080	0.120	0.120	
Carbon	kg.C/kg/bm	0.4571	0.4385	0.4174	0.4421	
Hydrogen	kg.H/kg/bm	0.0558	0.0526	0.0515	0.0524	
Oxygen	kg.O/kg/bm	0.3938	0.3757	0.3883	0.3643	
Azote	kg.N/kg.bm	0.0038	0.0396	0.0000	0.0079	
Sulfur	kg.S/kg.bm	0.0002	0.0003	0.0000	0.0008	
Ash	kg.ash/kg.bm	0.0093	0.0133	0.0229	0.0124	
HHV for BM.db	MJ/kg.bm.db	19.904	18.986	18.635	20.027	
HHV	kWh/kg.bm	5.087	4.852	4.555	4.896	
LHV for MB.db	MJ/kg.bm.db	18.571	17.730	17.351	18.718	
LHV	kWh/kg.bm	4.692	4.477	4.160	4.494	
Stoichiometric Flow	kg.air/kg.bm	5.498	5.250	4.914	5.335	
Softening ash temperature	degree C	1400	1200	1200	1200	

Table 2: Woody biomass characteristics

Agricultural residual biomass was chosen for the analysis – wheat straw, corn stover, vegetables growing wastes, vine pruning and fruit growing pruning; energetic biomass – miscanthus and energetic poplar; forest biomass - beech wood [2, 4, 8, 15].

Tables 3 and 4 present the parameters of the biomass gasification regimes in SEB.MESI, from which an average biochar share of 20% of the dry biomass is obtained and the ash softening temperature is not exceeded, in order not to block the propagation of the flaming pyrolysis and reduce the quality of the biochar produced.

Feature	U.M.	Values			
Biomass type		wheat straw pellets	corn stover pellets	vegetables wastes pellets	miscanthus pellets
Air ratio ER		0.254	0.277	0.284	0.251
Temperature in oxyzone	degree C	779	823	823	775
Biochar rate dry BM	kg.bc/kg.bm,db	0.206	0.188	0.194	0.216
Biochar rate	kg.bc/kg.bm	0.189	0.173	0.179	0.198
Carbon content in BCH	kg.C/kg.bc	0.660	0.612	0.785	0.779
Ash content in BCH	kg.ash/kg.bc	0.281	0.339	0.156	0.153
Molar ratio O/C	molO/molC	0.033	0.027	0.027	0.034
Molar ratio H/C	molH/molC	0.310	0.302	0.302	0.311
HHV for biochar	kWh/kg.bc	6.711	6.175	8.085	8.022
Biomass price	€/Mg.bm	130.00	130.00	130.00	160.00
Operating cost	€/y	14885.85	14885.85	14885.85	14885.85

Table 3: SEB.HW100 gasification regime for nonwoody biomass

ISSN 1454 - 8003 Proceedings of 2022 International Conference on Hydraulics and Pneumatics - HERVEX November 9-10, Băile Govora, Romania

Biomass consumption cost	€/y	29215.43	33847.06	33838.49	30224.28
Production costs	€/y	44101.29	48732.91	48724.34	45110.13
Thermal energy production	MWht/y	485.050	639.687	532.441	397.898
BCH mass production	Mg.bc/y	39.895	42.171	43.545	35.105
Thermal energy cost	€/MWht	58.583	54.142	55.087	66.388
BCH cost production	€/Mg.bc.db	393.168	334.328	445.377	532.533
Carbon from BCH cost	€/Mg.Cbc	595.553	546.448	567.483	683.824
Energy from BCH cost	€/MWh.bc	58.58	54.14	55.09	66.39

The biochar produced with SEB.HW100 unit has molar ratios O/C < 0.2 and H/C < 0.4 which is required for a biochar usable as an agricultural amendment, which produced at temperatures above 750 °C is sterile, porous and pH >10.00 [1, 11, 12, 17, 18, 19, 20].

Very low volatile biochar is very good for gasification because very little tar is produced which is simple, safe and cheap to dispose of [13].

The prices for the analyzed biomass are estimated from the current supply in the market of pellets and wood chips, which can have large variations depending on the requirement, supply and demand for energy.

Feature	U.M.		Va	ues	
Biomass type		beech wood pellets	energetic poplar pellets	vine pruning chopped	fruit pruning chopped
Air ratio		0.288	0.287	0.252	0.254
Temperature in oxyzone	degree C	819	823	856	877
Biochar rate dry BM	kg.bc/kg.bm,db	0.198	0.197	0.213	0.215
Biochar rate	kg.bc/kg.bm	0.182	0.181	0.187	0.189
Carbon content in BCH	kg.C/kg.bc	0.883	0.862	0.824	0.883
Ash content in BCH	kg.ash/kg.bc	0.051	0.073	0.122	0.0655
Molar ratio O/C	molO/molC	0.027	0.027	0.021	0.017
Molar ratio H/C	molH/molC	0.302	0.302	0.297	0.293
HHV BCH	kWh/kg.bc	9.172	8.947	8.524	9.177
Biomass price	€/Mg.bm	130.00	130.00	130.00	160.00
Operating cost	€/у	14885.85	14885.85	14885.85	14885.85
Biomass consumption price	€/y	48099.39	36562.25	25468.54	25576.92
Production costs	€/y	62985.25	51448.10	40354.40	40462.78
Thermal energy production	MWht/y	516.408	444.043	351.584	353.201
BCH mass production	Mg.bc/y	41.006	37.971	34.338	32.364
Thermal energy cost	€/MWht	70.57	65.44	62.63	62.23
BCH cost production	€/Mg.bc.db	647.29	589.67	533.89	571.10
Carbon from BCH cost	€/Mg.Cbc	732.79	678.91	647.66	646.57
Energy from BCH cost	€/MWh.bc	70.57	65.44	62.64	62.23

Table 4: SEB.HW100 gasification regime for woody biomass

Thermal energy can be produced with average costs in the range of $55 - 70 \in MWht$ depending on the price at which the gasified biomass enters production.

The production cost of BCH is lower for nonwoody biomass, as is the production cost of carbon from BCH, values that depend on the cost of the biomass processed.

BCH from nonwoody biomass contains a lot of ash and less carbon for which the main economically efficient use is as an agricultural amendment intended to increase the fertility of agricultural soils. A biochar with a high carbon content is indicated for gasification [1, 11, 12, 20].

Two representative types of biomass were chosen for the functional and energetic analysis. Poplar from intensive energy crops is used for woody biomass, which has a chemical composition similar to the average of forest resources [14, 16]. From the residual agricultural biomass, corn stover was chosen because it represents in RO and the EU about 40 of the collectable energy potential [5].

Table 5 shows the functional characteristics of the CHP.BC50 cogeneration unit with a nominal electrical power of 50 kWe. The CHP.BC50 produces cold gas.bc that can be used instead of natural gas and LPG, or to feed an electric power generator, when and as much as needed. The relatively low power was chosen to be usable in isolated locations with alternative operating regimes, low load with heat production, gas.bc production for consumption, electricity and heat production.

For maximum efficiency utilization, the generator set only regime in an optimal mode, the specialized heat engine is constructively optimized and extremely driven, with an efficiency of up to 50%, a common variant for hybrid cars with heat engine charging. The 27% electrical efficiency used in the simulation is still modest, but with a real basis.

Feature	U.M.	Values	
BCH from biomass type		energetic poplar	corn stover
HHV for BCH	MWh/Mg.bc	8.944	6.175
Carbon content	kg.C/kg.bc	0.862	0.612
BCH production cost	€/Mg.bc	589.00	355.00
Handling and storage	%	5	5
BCH user cost	€/Mg.bc.db	618.45	372.75
Cooled gas.bc efficiency	%	75.0	75.0
Gas.bc specific energy	MWh/kg.bc	6.708	4.631
Gas engine yield	%	38	38
Electric generator yield	%	95	95
Electro engine generator yield	%	36.1	36.1
Electricity production efficiency	%	27.1	27.1
Yield heat recovery gas.bc cooling	%	0.213	0.213
Yield heat recovery gas engine	%	37.2	37.2
Thermal energy efficiency	%	58.5	58.5
Cogeneration efficiency	%	85.5	85.5
Cogeneration Index	%	46.3	46.3
CFP emitted from operation	kg.CO2/Mg.bc	35.000	35.000

Table 5: Operating characteristics of CHP.BC50 unit

Table 6 shows the results of the economic estimation of the use of CHP.BC50 for a continuous operation of 7000 h/y and an operating life of 5 years, extendable through successive upgrades.

This results in an hourly operating cost of 7.10 \in /h affected by input cost estimation errors of ± 10 %.

Feature	U.M.	Values
Specific power CHP price	€/kWe	2500
Electric power	kWe	50.000
CHP.BC50 price	€/system	125000
Installation and start-up ratio	%	20
Installation and start-up costs	€/system	150000
Live Cycle operating time	y/LC	5.00
Annual operating time	h/y	7000.00
Annual banking interest	%	5.00
Annual income from deposit	€/y	7500.00
Residual value ratio	%	30.00
Installment depreciable value	€/system	149985
Annual value to be amortized	€/y	37497
Annual maintenance rate costs	%	15
Annual maintenance costs	€/y	5624.55
Operator cost	€/month	500.00
Annual operating costs	€/y	49121.55
Hourly operating costs	€/h	7.017

Table 6: Operating costs for CHP.BC50 unit

3. Results

From the data obtained for operating regimes and production costs, the production costs for the production of electricity and heat, as well as for gas.bc intended for local replacement of PLG and in emergency cases of NG at network blockages, can be estimated accurately enough.

Feature	U.M.	Values	
Biomass type		poplar	corn stover
HHV for BCH	MWh/Mg.bc	8.944	6.175
BCH using cost	€/Mg.bc	618.45	372.75
Specific electricity production	MWhe/Mg.bc	2.422	1.672
Specific BCH consumption	kg.bc/kWhe	0.413	0.598
Hourly BCH consumption	kg.bc/h	20.647	29.906
Hourly BCH cost	€/h	12.77	11.15
CHP production hourly costs	€/h	19.79	18.15
Hourly input energy	MWh/h	184.672	184.672
Electricity production efficiency	%	0.271	0.271
Thermal energy efficiency	%	0.585	0.585

Table 7: Economic evaluation of CHP.BC50 unit

ISSN 1454 - 8003 Proceedings of 2022 International Conference on Hydraulics and Pneumatics - HERVEX November 9-10, Băile Govora, Romania

Cogeneration Index	%	0.463	0.463
Hourly electricity production	MWhe/h	0.050	0.050
Hourly thermal energy production	MWht/h	107.941	107.941
Equivalent energy produced annually	MWh/y	108.049	108.049
Specific cost thermal energy	€/MWht	183.12	168.12
Electricity cost	€/MWhe	395.33	362.94
ENEL tariff	€/MWhe	246.00	246.00
Difference from ENEL tariff	€/MWhe	149.33	116.94

Table 8: Economic evaluation gas.bc use

Feature	U.M.	Values	
Biomass type		poplar	corn stover
CHP.BC50 hourly consume	kg.bc/h	20.647	29.9074
BCH cost	€/Mg.bc	618.45	372.75
Hourly cost BCH consumption	€/h	12.77	11.15
HHV cooled gas.bc	MWh/Mg.bc	6.708	4.631
Gas.bc hourly energy production	MWh/h	0.139	0.139
Gas.bc energy cost	€/MWh	80.65	60.36
Hourly operating costs	€/h	4.91	4.91
Hourly gas.bc production cost	€/h	17.68	16.06
Gas.bc energy cost	€/MWh.gbc	127.66	115.95
NG average cost in 2022 year	€/MWh	95.35	95.35
Gas.bc to NG difference energy costs	€/MWh	32.31	20.60
PLG energy cost in 2022 year	€/MWh	398.22	398.22
Gas.bc to PLG difference energy costs	€/MWh	-270.56	-282.27

The cost of the produced electricity of $380 \notin MWhe \pm 10\%$ is relatively high compared to the current one in the national network of $246 \notin MWhe$, but lower than that of the electricity produced by the intervention generators. For energetically isolated areas without an electrical network, the use of CHP.BC with biochar produced from locally available biomass is economical, ecological and with a positive social impact.

Table 8 presents the economic evaluation of the use of gas.bc to replace NG in emergency cases and PLG for local use.

The production cost of 120 €/MWh.gbc ± 10% is +25% higher than that of NG, but economically acceptable for emergency situations when the supply of energy for vital consumption is important. In the case of replacing the local use of PLG with gas.bc, the cost difference is obvious, which is on average +255 €/MWh, that is, the use of gas.bc is 3.3 times cheaper, being an obvious economic alternative. However, the difference is mitigated by the need for a much higher initial investment, but with guaranteed long-term economic efficiency.

4. Conclusions

In the current energy crisis, the production of energy and biochar from residual plant biomass, **when and as much as necessary**, is a complementary solution when it is dark and the wind is not blowing, ensuring economically and ecologically the necessary energy consumption in real time.

This work is a contribution to the development of research and the design of systems for the production and efficient use of biochar produced from vegetable biomass for the production of energy when and as much as necessary and the increase of agricultural soil fertility.

A wide variety of plant biomass can be gasified with SEB.MESI with CHAB concept to produce when and how much thermal energy is needed with an average efficiency of 45% and to obtain 20% high quality biochar.

The biochar produced with SEB.MESI has molar ratios O/C < 0.2 and H/C < 0.4, which is required for a biochar usable as an agricultural amendment, which, being produced at temperatures above 750 °C, is sterile, porous and with pH >10.0. The minimum commercial price in EU 2021 was 1250 \notin /Mg.bc with a maximum of 4000 \notin /Mg.bc.

The production costs for biochar are 350 - 450€/Mg.bc for nonwoody biomass and 550 - 650€/Mg.bc for woody biomass, much below the current prices on the BCH market, which ensures an advantageous capitalization.

It is worth mentioning the production cost of carbon from BCH, which is on average 550 – 650 €/Mg.Cbc for nonwoody biomass and 650 – 750 €/Mg.Cbc for woody biomass, strongly influenced by the cost of the biomass used.

Biochar can be stored as a carbon and energy stock, for long periods, usable as an agricultural amendment, as a filter material, but very important as a source of energy for emergency situations, when and as much as needed.

Energy can be produced from gas.bc 3 times cheaper than from PLG, thus being a cheap and safe source of fuel gas for isolated areas without a NG network.

The cost of electricity produced from BCH is higher than that from the network, by about 35-50%, acceptable for emergency situations, but much lower than that of emergency generators.

The biochar produced from residual agricultural plant biomass, which has a lot of ash, is indicated to be used effectively as an agricultural amendment, with which it produces an average increase in agricultural production by 13%, an action subsidized with green vouchers, now with the value of 180 €/Mg. Cbc.

The stock of biochar can be used when and as much as necessary as an agricultural amendment or for the production of energy in emergency situations or for continuous consumption, for a zero carbon footprint it is required that at least 30% of the stock be used as an agricultural amendment.

References

- [1] Conte, Pellegrino, Roberta Bertani, Paolo Sgarbossa, Paola Bambina, Hans-Peter Schmidt, Roberto Raga, Giuseppe Lo Papa, Delia Francesca Chillura Martino, and Paolo Lo Meo. "Recent Developments in understanding Biochar's Physical–Chemistry." *Agronomy* 11, no. 4 (2021): 615.
- [2] Greco, F., S. Righi, A.C. Dias, and L. Tarelho. "Wood pellet as biofuel: a comparative life cycle analysis of a domestic and industrial production chain." Paper presented at the 12th Italian LCA Network Conference, Messina, Italy, June 11-12, 2018.
- [3] Murad, Erol, and Florian Dragomir. "Heat generators with TLUD gasifier for generating energy from biomass with a negative balance of CO₂." Paper presented at the International Conference on Hydraulics and Pneumatics HERVEX 2012, Călimăneşti-Căciulata, Romania, November 7-9, 2012.
- [4] Murad, E., C. Dumitrescu, F. Dragomir, and M. Popescu. "CHAB concept in sustainable development of agriculture." Paper presented at the International Symposium ISB-INMA TEH' 2016, Bucharest, Romania, October 27 – 29, 2016.
- [5] Murad, Erol. "Production of energy and agribiochar without residues and with negative carbon footprint with CHAB and CHBAP concepts from the Romanian residual vegetable agricultural biomass." Paper presented at the International Symposium ISB-INMA TEH' 2021, Bucharest, Romania, October 29, 2021.
- [6] Murad, Erol, Manuela Drăghicescu, Perino-Constantin Baraga, and Adrian-Ioan Drăghicescu. "Energy and Biochar production with a ZERO carbon foot print." Paper presented at the National Conference of New and Renewable Energy Sources, CNSNRE 2022, Valahia University, Târgovişte, Romania, June 2 - 3, 2022.
- [7] Murad, Erol. "Production of energy and agribiochar without residues and with negative carbon footprint with CHAB and CHPAB concepts from the annual residual vegetable agricultural biomass from

Romania." ANNALS of Faculty Engineering Hunedoara – International Journal of Engineering XX, no. 1 (February 2022): 109-116.

- [8] Murad, E. "Biochar from residual vegetable agricultural biomass amendment for increasing agricultural production and energy stock." Paper presented at the International Symposium ISB-INMA TEH' 2022, Bucharest, Romania, October 7, 2022.
- [9] Hu, Qiang, Janelle Jung, Dexiang Chen, Ken Leong, Shuang Song, Fanghua Li, Babu Cadiam Mohan, Zhiyi Yao, Arun Kumar Prabhakar, Xuan Hao Lin, Ee Yang Lim, Le Zhang, Gupta Souradeep, Yong Sik Ok, Harn Wei Kua, Sam F.Y. Li, Hugh T.W. Tan, Yanjun Dai, Yen Wah Tong, Yinghong Peng, Stephen Joseph, and Chi-Hwa Wang. "Biochar industry to circular economy." *Science of the Total Environment* 757 (February 2021): 143820.
- [10] San Miguel, G., A.M. Méndez, G. Gascó, and A. Quero. "LCA of alternative biochar production technologies." Paper presented at the15th International Conference on Environmental Science and Technology, Rhodes, Greece, August 31 - September 2, 2017.
- [11] Schmid, Hans-Peter, Claudia Kammann, and Nikolas Hageman. EBC-Guidelines for the Certification of Biochar Based Carbon Sinks. Version 2.1 from 1st February 2021. Ithaka Institute for Carbon Strategies, Switzerland (www.ithaka-institut.org), 2020.
- [12] Schmidt, Hans-Peter, Claudia Kammann, Nikolas Hagemann, Jens Leifeld, Thomas D. Bucheli, Miguel Angel Sánchez Monedero, and Maria Luz Cayuela. "Biochar in agriculture – A systematic review of 26 global meta-analyses." *GCB-Bioenergy* 13, no. 11 (November 2021): 1708-1730.
- [13] Zhao, Shengguo, Liang Ding, Yun Ruan, Bin Bai, Zegang Qiu, and Zhiqin Li. "Experimental and Kinetic Studies on Steam Gasification of a Biomass Char." *Energies* 14 (2021): 7229. https://doi.org/10.3390/en14217229.
- [14] Stolarski, M.J., K. Warminski, and M. Krzyzaniak. "Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland." *Energies* 13 (2020): 1495. doi:10.3390/en13061495 www.mdpi.com/journal/energies.
- [15] Pröll, Tobias, and Florian Zerobin. "Biomass-based negative emission technology options with combined heat and power generation." *Mitigation and Adaptation Strategies for Global Change* 24, no. 7 (2019): 1307–1324.
- [16] Townsend, P.A., S.P. Kar, and R. O. Miller. *Poplar (Populus spp.) Trees for Biofuel Production*. USDA National Institute of Food and Agriculture, September 5, 2019.
- [17] Levine, Jonah (ed.). "U.S.-Focused Biochar Report. Assessment of Biochar's Benefits for the United States of America." Center for Energy and Environmental Security, June 2010, Colorado, USA.
- [18] Bioenergy Europe. *Bioenergy Europe factsheet: Biomass for energy Agricultural residues & energy crops.* October 15, 2019. Accessed October 12, 2022. https://bioenergyeurope.org/component/attachments/attachments.html?id=561&task=download.
- [19] European Biochar Industry Consortium e.V. (EBI). *EBI Whitepaper. Biochar-based carbon sinks to mitigate climate change*. October 2020. Accessed October 10, 2022. http://www.biochar-industry.com/wp-content/uploads/2020/10/Whitepaper_Biochar2020.pdf.
- [20] Verra. Etter, Hannes, Andrea Vera, Chetan Aggarwal, Matt Delaney, and Simon Manley. Verified Carbon Standard Program. *Methodology for biochar utilization in soil and non-soil applications*. Version 1.0. August 4, 2021. https://verra.org/wp-content/uploads/imported/methodologies/210803_VCS-Biochar-Methodology-v1.0-.pdf.